Integrative Computational Modeling

for Developing Means to Manipulate Biological Particulates and for Solving Complex Problems

Yu Zhao and Guigen Zhang

F. Joseph Halcomb III, M.D. Department of Biomedical Engineering

Overview

- A brief discussion on reductive vs integrative investigation
- A case study: how integrative computational modeling helps advance the understanding and application of dielectrophoresis (DEP) in various situations
- Other applications in advancing the design and development of nanopore, medical devices, novel materials, actuation devices, and coupled spectroscopic techniques, etc.

Reductive Investigation

 Reductive Engineering: reducing complex issues to small independent pieces by neglecting/discarding factors we don't know about for simplicity and clarity

DNA is: AN INSULATOR Dunlap et al. PNAS 90, 7652, 1993 A CONDUCTOR Fink and Schoenberger, Nature 398, 407, 1999 A SEMICONDUCTOR Porath et al, **Nature** 403, 635, 2000 A SUPERCONDUCTOR Kasumov et al. Science 291, 280, 2001

• While we have been laughing at it since childhood, we are still victims of this 'Blind Men' exploratory approach in our scientific endeavors.

Integrative Investigation

Introduction to Integrative Engineering

A Computational Approach to Biomedical Problems

Zen Master D. Suzuki (1870 - 1966):

The Zen's way of knowing a flower should not be analytically reductive, in which one would pluck the flower, bring it to a laboratory, and dissect it, because once the flower is plucked it is no longer the flower one intends to know. ... Instead, one is to leave it where it is, let it be in its living state and environment, and *contemplate* it.

An integrative way uses non-reductive, yet analytical and investigative means to interact with the world based on computational modeling supported by experimental validation and realization.

Advancing dielectrophoresis (DEP) and expanding its application

• What is Dielectrophoresis (DEP)

Useful DEP applications

Separation of cells based on size difference

Single cell capture with specifically designed microwells

Liver organ on chip

Pattern cells in 3D hydrogel

Analytical basis for DEP

Without computational modeling, understanding of DEP phenomena heavily relies upon the analytical method

Point dipole method

Advantages:

- 1. It is convenient to be used to determine the magnitude and direction of DEP force
- 2. It can be easily implemented to study the movement of a single particle

Limitations:

- 1. The estimated DEP force is not accurate when the field is highly non-uniform
- 2. Particle-particle interaction and non-homogeneity of particle are not considered

Validity of other numerical methods

Maxwell Stress Tensor (MST) method

Lorentz
Force lawVolume
IntegrationIntermediate
DEP forceDivergence
TheoremDEP force
$$\vec{f} = \rho \vec{E} + \vec{J} \times \vec{B}$$
 $\vec{F} = \iiint_V \varepsilon_p \left(\left(\nabla \cdot \vec{E} \right) \vec{E} + (\vec{E} \cdot \nabla) \vec{E} - \frac{1}{2} \nabla E^2 \right) dV$ $\vec{F} = \oiint \frac{1}{4} \varepsilon_m \left[\left(\vec{E} \vec{E}^* + \vec{E}^* \vec{E} \right) - |E|^2 \vec{U} \right] \cdot \vec{n} dA$

The MST method has been treated as providing the most robust and accurate solution to DEP force

Some concerns are raised about the validity of MST method, including:

- Misconception of essence of force
- Misuse of torque expression
- Validity for non-homogeneous particle

Developing and implementing a new DEP theory

A new volumetric polarization and integration method is developed to overcome deficiencies of MST method and elucidate underlying mechanism of complicated DEP phenomena

Some comparisons

Both the volumetric polarization and integration method and MST method are used to calculate DEP force on non-homogeneous particle

TABLE II. DEP force on gold coated particles.

				10^4 Hz		10 ^{4.5} Hz		10 ⁵ Hz	
PS	Volumetric-integration n MST method (nN)	Volumetric-integration method (nN) MST method (nN)						$ 80.04 \\ -4.23 \times 10^4 $	
	TABLE III. DEP force of	on Janus partic	les						
gold		Volumetric-integration method							
		25 kHz	50 kHz	75 kHz	100 kHz	1 MHz	5 MHz	20 MHz	
PS	Janus particle (nN)	27.4	27.4	27.6	27.8	51.7	105	114	
anethiol	Janus particle with alkanethiol layer (nN)	-77.2	-17.3	2.1	10.2	32.1	77.0	97.4	
		MST method							
		25 kHz	50 kHz	75 kHa	100 kHz	1 MHz	5 MHa	20 MHz	

	2J KIIZ	JU KIIZ	/ J KIIZ	100 KHZ	1 MILL	JIMITZ	20 101112
Janus particle (nN)	$-1.23 imes 10^4$	$-3.40 imes 10^4$	$-5.08 imes10^4$	-6.04×10^4	$-8.02 imes 10^4$	$-2.76 imes 10^4$	-2.95×10^3
Janus particle with	-9.63×10^4	-9.63×10^4	-9.62×10^4	-9.61×10^4	-7.32×10^4	-1.06×10^4	-667
alkanethiol layer (nN)							

Use of MST method for non-homogeneous particle will lead to incorrect results!

Elucidating cell rotation behavior

By taking interior components of cell into consideration, volumetric polarization and integration method can successfully explain rotational behavior of cell

Direction of rotation is determined by location of inclusion

Elucidating cell rotation behavior

By taking interior components of cell into consideration, volumetric polarization and integration method can successfully explain rotational behavior of cell

Pearl-chain tumbling behavior

The unique tumbling movement of pearl chains can also be explained by using the volumetric polarization and integration method

Rapid biomanufacturing

Considering the double layer effect

Electric double layer (EDL) will affect the dielectric property of particle, but its effect is not fully understood due to lack of physical relevance in current analytical theory

Conventional approach

hulk

+

Considering the double layer effect

The disagreement between experimental and modeling results indicate something is missing

Surface adsorption plays a vital role in determining the crossover frequency

Ionic Current (A)

Other application: nanopore device

Nanopore for ionic gating

Nanopore for ionic gating

Bioengineering problems

Artificial muscle: Ionic polymer metal composites (ipmc)

Voltage \rightarrow Cation concentration gradient \rightarrow Cation accumulation/depletion causes body force \rightarrow bending

Acoustic wave actuation

(0,90,90)

Coupled WGM/SERS/SPR Spectroscopic Technique

• Let us talk, explore and collaborate ...

Guigen Zhang, Ph.D., FAIMBE Professor and Chair F. Joseph Halcomb III, M.D. Endowed Chair

Email: guigen.bme@uky.edu Phone: 859-323-7217 Office: 522A Robotics & Manufacturing Building